Midpoint rule as a variational-symplectic integrator: Hamiltonian systems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On variational and symplectic time integrators for Hamiltonian systems

Article history: Received 18 August 2015 Received in revised form 22 October 2015 Accepted 22 November 2015 Available online 2 December 2015

متن کامل

Anomaly in Symplectic Integrator

Effective Liouville operators of the firstand the second-order symplectic integrators are obtained for the one-dimensional harmonic-oscillator system. The operators are defined only when the time step is less than two. Absolute values of the coordinate and the momentum monotonically increase for large time steps. PACS numbers: 05.10.-a, 02.10.Hh

متن کامل

Symplectic maps for approximating polynomial Hamiltonian systems.

We study how to approximate polynomial Hamiltonian systems by composition of symplectic maps. Recently, a number of methods preserving the symplectic character have appeared. However, they are not completely satisfactory because, in general, they are computationally expensive, very difficult to obtain or their accuracy is relatively low. The efficiency of a numerical method depends on both its ...

متن کامل

Symplectic theory of completely integrable Hamiltonian systems

This paper explains the recent developments on the symplectic theory of Hamiltonian completely integrable systems on symplectic 4-manifolds, compact or not. One fundamental ingredient of these developments has been the understanding of singular affine structures. These developments make use of results obtained by many authors in the second half of the twentieth century, notably Arnold, Duisterm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review D

سال: 2006

ISSN: 1550-7998,1550-2368

DOI: 10.1103/physrevd.73.024001